網頁設計

openvino 若何run demo applicatio

參考文章
https://iam9527.pixnet.net/blog/ ... un-demo-application

OpenVino概念
openvino 若何run demo applicatioopenvino 若何run demo applicatio

圖改自https://www.learnopencv.com/using-openvino-with-opencv/#openvino-opencv
將已經練習好的深度進修model經過Model Optimizer優化後
(何謂優化請見下面Model Optimizer條目)
經過Inference Engine  跟 硬體(CPU/ GPU /VPU)
達到加快Inference 的目的

★ Model Optimizer
      ●摘錄自:【AI_Column】應用 Intel OpenVINO 土炮自駕車視覺系統
       協助去除已練習好的模型中的冗餘參數,並可將 32bits 浮點數的參數降階,
      以犧牲數個百分點正確率來換取推論速度提升數十倍到百倍。

   ●把深度進修框架Train出來的model, 轉換成 Inference Engine 可以用的IR file
       今朝支援的深度學習框架有 Caffe*, TensorFlow*, MXNet*, and ONNX*.
     ●之前以為所有由Caffe*, TensorFlow*, MXNet*, and ONNX* 練習出的model
     都可以由Model Optimizer轉換成IR file  ,但看了 的Supported Models章節
     好像不是這麼一回事,需找一個底下沒提到的model來實行看看
     有結果我再更新
      Supported Models
        For the list of supported models refer to the framework or format specific page:
•        Supported Caffe* models
•        Supported TensorFlow* models
•        Supported MXNet* models
•        Supported ONNX* models
•        Supported Kaldi* models
   ●有script可以 configure Model Optimizer  以導入
     所有OpenVino supported的深度進修框架或單一深度進修框架
       若要手動configure Model Optimizer也有文件可以參考 ->  Model Optimizer Developer Guide.

★ IR file
   包含train model的topology 跟weight,利用者只要知道如何將
   練習好的model change to IR file,就能夠利用OpenVino加速Inference

★ Inference Engine
   用來run 最好化後的深度進修model
   C:\Program Files (x86)\Intel\openvino_2021.4.689\
   deployment_tools\inference_engine\samples底下有放一些IE的samples   
   各Samples申明  
   延伸浏覽 → 如何run Inference Engine Samples
★ VPU plugin
    這份文件仿佛在講怎樣的model能被vpu 支援
■OpenVino不提供Model Training
   OpenVino的model來曆以我的理解就以下這幾種
   1.本身用OpenVino supported的深度進修框架去train  model
      或去Model Zoo下載所需model
1.        Caffe [ Model Zoo ]
2.        Tensorflow [ Model Zoo ]
3.        MxNet [ Model zoo ] 貫穿連接失效
4.        Open Neural Network Exchange (ONNX) [ Model zoo ]
   2.OpenVino裡面附的pre-trained model  
      不過紛歧定有相符你需求的
   3.OpenCV DNN sample model
■相幹名詞
★ OpenVino用的是CNN( Convolutional Neural Networks )模子 ;
   還包含了Deep Learning Deployment Toolkit (Intel® DLDT).
    openvino 若何run demo applicatioopenvino 若何run demo applicatio
      Convolution:影象->filter->擷掏出特徵,比如邊緣。
      此種進程叫做Convolution
★ OpenCV和OpenVX有什么联系和区别?
★ 機械進修
   機械學習理論首要是設計和闡發一些讓電腦可以自動進修的演算法。
    機械學習演算法是一類從資猜中主動剖析取得紀律,並操縱紀律對未知資料進行展望的演算法。
★ 深度進修
   是機器進修的分支。 深度進修框架對照
■如何安裝OpenVino
照著 安裝步調做即可 (英文看不懂請自行戰勝)
-------------------------------------------------------------------------------------------------------------------------------
上述的東西都認識之後,接下來最先DEMO OpenVino附的兩個script
■Run the Image Classification Verification Script
   ★在C:\Program Files (x86)\IntelSWTools\openvino\deployment_tools\demo下
   可以找到demo_squeezenet_download_convert_run.bat。
   這個demo利用squeezenet model 判斷照片中的Object屬於什麼種別
   可判定的種別有一千種,有哪一千種可以看底下這個檔案
   C:\Program Files (x86)\Intel\openvino_2021.4.689\
   deployment_tools\demo\squeezenet1.1.labels
   *路徑中的openvino_2019.1.148的2019.1.148這數字代表版本, 是以若安裝的OpenVino版本跟我分歧,那數字也會不同
   *若安裝不只一個版本的OpenVino,分歧版本的OpenVino會有屬於自己的資料夾
   而openvino那個捷徑會指向最後安裝的誰人版本
openvino 若何run demo applicatio    openvino 若何run demo applicatio
★這個batch的內容以下
   Step1 :  下載SqueezeNet model (利用downloader.py)
   Step2: 用 Model Optimizer 把SqueezeNet轉成IR file。
                (利用mo.py)
   Step3: Build Inference Engine samples
                batch檔履行過程中, 會看到cmd 畫面卡在
                Build Inference Engine samples using MS Visual Studio (MSBuild.exe)一段時間
                請耐煩等候 。此步會產生 classification_sample.exe
   Step4: 把car.png & IR file當作iInference Engine的input 來剖析car.png
   ↓This is car.png
    openvino 若何run demo applicatio
openvino 若何run demo applicatio
   ↓針對照片中的Object,分類前十名的結果依序從Prob.高到低排列
   分類成效最高分數是sport car
openvino 若何run demo applicatio
   openvino 若何run demo applicatio
★重跑demo_squeezenet_download_convert_run.bat
   跑過一次batch之後,若再執行一次batch,
   因為某些檔案跑過一次batch以後就已存在了
   batch裡的寫法偵測到某些檔案存在以後就會疏忽掉某些Step
   若想要完全地再跑一次,需刪除以下檔案
   ●刪除model
   C:\Users\$(username)\Documents\Intel\OpenVINO\openvino_models
    \models\FP32\classification
   底下全部squeezenet 資料夾刪掉
   注意:FP32是針對CPU device的,若是VPU devide ,對應到的folder name是FP16

   ●刪除 IR       
   C:\Users\$(username)\Documents\Intel\OpenVINO\openvino_models\ir\FP32
    \classification\squeezenet\1.1\ 底下全部caffe 資料夾刪掉
   注意:FP32是針對CPU device的,若是VPU devide ,對應到的folder name是FP16
------------------------------------------------------------------------------------------------
■Run the Inference Pipeline Verification Script
★demo_security_barrier_camera.bat 這個batch的內容如下
Step1 : 下載 three pre-trained models IRs
Step2:build Security Barrier Camera Demo Inference Engine來闡發car1.bmp
Step3: 圖片裡的object會被第一個model判定成是車輛,
              這個判定結果被看成input 導入到下一個model,
              這個model可以指出車輛的一些屬性 ex:車牌
              最後 車牌被看成input導入到第三個model,這個model可以把車牌的字元辨認出
              會被稱做Pipeline 我想應當是識別成效從第一個model傳到第三個model
             像水流在管線裡活動一樣吧...

        
★重跑全部bat
  跑過一次batch之後,有些step會被疏忽掉,因為某些檔案已存在了
  若要乾乾淨淨的再跑一次,需要刪除以下檔案
  ●刪除 IR      
  C:\Users\$(username)\Documents\Intel\OpenVINO\openvino_models\
  ir\FP32\classification\squeezenet\1.1\
  底下整個caffe 資料夾刪掉

----------------------------------------------------------------------------------------------------------
以上典範榜樣是利用openvino在 CPU
若用其他intel 硬體, 好比movidius gpu vpu  FPGA or MYRIAD
請參考安裝文件中 Optional Steps這部分
-----------------------------------------------------------------------------------------------------------
■OpenVino PreTrained Model
★OpenVINO提供好幾個pre-trained models
可以用Model Downloader 或到
https://download.01.org/opencv/2019/open_model_zoo/ 去下載
下載的model是被優化過的model,稱作IR file( xml 檔+ bin 檔)

★可在這邊 https://docs.openvinotoolkit.org/latest/_demos_README.html
Demos that Support Pre-Trained Models章節
看各個pre-trained model support哪些Device
Object Detection Models
裡面包括好幾個model可以用來偵測object
包括:人臉,人,車輛
Object Recognition Models
用來分類或特徵辨識,使用在其他detector之後。好比先做人臉偵測,再做春秋/性別辨識

Semantic Segmentation Models
原文網址:https://kknews.cc/zh-tw/tech/mgqvl9.html
語義分割(Semantic Segmentation)的目的是給定一張圖片,對於圖片中的每一個像素做分類。
例如圖1(a)中給出的原始輸入圖片,語義朋分算法對圖片中的每一個像素分類,
獲得如圖1(b)的成果。在圖1(b)中,分歧顏色代表分歧類別:
如紅色代表行人,藍色代表汽車,綠色代表樹,灰色代表建築物等。
語義朋分問題在良多運用場景中都有著十分重要的感化(例如圖片理解,自動駕駛等)
openvino 若何run demo applicatio
openvino 若何run demo applicatio

Instance Segmentation Models
INSTANCE SEGMENTATION可以知道同類object的數量(不同色彩示意)
https://arxiv.org/pdf/1405.0312.pdf
openvino 若何run demo applicatio openvino 若何run demo applicatioopenvino 若何run demo applicatio
openvino 若何run demo applicatio
Human Pose Estimation Models
Image Processing
提高影象品質
openvino 若何run demo applicatioopenvino 若何run demo applicatio

Text Detection
Action Recognition Models
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
■Trouble Shooting
● 安裝時碰到CMake*/ Python* version  xxx or higher is not detected.
openvino 若何run demo applicatio       openvino 若何run demo applicatio

      ->Fixed by 安裝如提示的CMake & Python版本後
      再重安裝一次OpenVino
● 電腦已經有安裝Python3.6.5了
      仍是會泛起Python* version  xxx or higher is not detected.
      ->Fixed by 再安裝一次Python >選Modify  >勾選Add Python.....
      ->再安裝一次OpenVino就可以了
openvino 若何run demo applicatio
      openvino 若何run demo applicatio

● 執行demo_squeezenet_download_convert_run.bat前
      若沒有安裝cmake 會出現以下Error
       'cmake' is not recognized as an internal or external command,
       operable program or batch file.
       ->Fixed by 安裝cmake
       請參考 Install CMake* 3.4 or higher章節
  ● 履行demo_squeezenet_download_convert_run.bat發生以下Err
      target_precision = FP32
      Python 3.6.6
      ECHO is off.
      PYTHONPATH=C:\Program Files (x86)\IntelSWTools\openvino\python\python3.6;
      [setupvars.bat] OpenVINO environment initialized
      INTEL_OPENVINO_DIR is set to C:\Program Files (x86)\IntelSWTools\openvino
      Python 3.6.6
      ECHO is off.
      Collecting pyyaml
      Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by       'ProxyError('Cannot connect to proxy.', OSError('Tunnel connection failed: 407 Proxy Authentication Required (         Forefront TMG requires authorization to fulfill the request. Access to the Web Proxy filter is denied.  )',))':                 /simple/pyyaml/
       ...
      Could not find a version that satisfies the requirement pyyaml (from versions: )
      No matching distribution found for pyyaml
      ->Fixed by 更改proxy設定
      憑據Cannot connect to proxy這個訊息判定應當是proxy問題
      本來我是利用公司內網run script
      後來將proxy調劑成以下設定&連手機熱門就可以履行了  
       openvino 若何run demo applicatioopenvino 若何run demo applicatio
  ● 出現以下Error
     ###############|| Generate VS solution for Inference Engine samples using cmake ||###############

     Waiting for 2 seconds, press a key to continue ...
     Creating Visual Studio 15 2017 x64 files in      
     C:\Users\$(userName)\Documents\Intel\OpenVINO\inference_engine_samples_build...
     CMake Error at CMakeLists.txt:7 (project):
     Generator
     Visual Studio 15 2017
     could not find any instance of Visual Studio.
     -- Configuring incomplete, errors occurred!
     ->fixed by reboot
    因為在安裝openvino之前我有開visual studio installer去 modify設定
    設定完後沒有依照指導重開機
    是以出現以上issue
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
●其它參考連結
  - OPENvINO with openCV
  - 既跨平台又開源 英特爾開啟聰明視覺立異
    跨越20個預先訓練的模子,和針對OpenCV和OpenVx的最佳化電腦視覺庫。
    OpenVINO工具套件可透過CPU、GPU、FPGA、Movidius VPU(AI晶片 )等硬體進行佈置,
    加強視覺系統功能和性能
-   SqueezeNet
     SqueezeNet 是圖片分類模型,最合適參數較少及較小的模型利用,相較於現代圖片分類模型 (AlexNet),
     不會犧牲品質。
-   C:\Program Files (x86)\Intel\openvino_2021.4.689\documentation

文章標籤

paineyva1xk 發表在 痞客邦 留言(0) 人氣()

  1.  
  2. // 避免無法正確取得圖片的寬高
  3. // 是以動作延遲到 window.onload
  4. $(window).load(function(){
  5.         // 取得要加上偽浮水印圖片後來一一做設定
  6.         $(".water").each(function(i, ele){
  7.                 // 先把目前元素轉換成 jQuery 物件跋文錄起來
  8.                 // 再獲得本身圖片的寬高及 alt
  9.                 var _this = $(ele),
  10.                         _position = _this.position(),
  11.                         _height = _this.height(),
  12.                         _width = _this.width(),
  13.                         _alt = _this.attr('alt') || '';
  14.  
  15.                 // 在 body 中插入一個寬高檔於 _this 的 blank.gif 圖片
  16.                 // position 設成 absolute 後移動到 _this 的同位置
  17.                 $('<img />').css({
  18.                         position: 'absolute',
  19.                         zIndex: 10000,網頁設計
  20.                         top: _position.top,
  21.                         left: _position.left
  22.                 }).attr({網頁設計
  23.                         src: 'blank.gif',
  24.                         height: _height,
  25.                         width: _width,
  26.                         title: _alt
  27.                 }).appendTo('body');
  28.  
  29.                 // 在 body 中插入一個寬高檔於 _this 的 Div
  30.                 // position 設成 absolute 後移動到 _this 的同位置
  31.                 // 此 Div 的 background-image 就放我們想要放的 logo
  32.                 // 並可指定它的 background-position 位置
  33.                 $('<div />').css({
  34.                         height: _height,
  35.                         width: _width,
  36.                         position: 'absolute',
  37.                         zIndex: 9999,
  38.                         top: _position.top,
  39.                         left: _position.left,
  40.                         backgroundImage: 'url(logo.gif)',
  41.                         backgroundPosition: 'bottom right',
  42.                         backgroundRepeat: 'no-repeat'
  43.                 }).appendTo('body');網頁設計
  44.         });
  45. });
複製代碼
文章標籤

paineyva1xk 發表在 痞客邦 留言(0) 人氣()

  1. cPs# lsof -iTCP:25 -sTCP:LISTEN
  2. cPs# /scripts/restartsrv_exim --status
  3. (XID 3ufkqb) The “exim” service is down.
複製代碼
文章標籤

paineyva1xk 發表在 痞客邦 留言(0) 人氣()

  1. iptables -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu
複製代碼
文章標籤

paineyva1xk 發表在 痞客邦 留言(0) 人氣()


文章出處:網頁設計,網站架設 ,網路行銷,網頁優化,SEO - 網頁設計NetYea 網頁設計

網頁設計學會Arduino根基操控後
必然會想學會無線遙控,如藍芽Bluetooth, Wifi
這篇說明藍芽Bluetooth操控

結果圖
網頁設計 若何用藍芽Bluetooth連線節制 Arduin


影片


代碼:

文章標籤

paineyva1xk 發表在 痞客邦 留言(0) 人氣()